References used in this blog

[1] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, vol. -1. John WIley & Sons, Inc., Jul, 1972. http://adsabs.harvard.edu/abs/1972gcpa.book.....W. 

[2] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. W H Freeman and Company, first ed., 1973. 

[3] S. Weinberg, The first three minutes : a modern view of the origin of the universe. Basic Books, New York, 1993. 

[4] S. Dandelson, Modern Cosmology. Academic Press, 2003. 

[5] S. Weinberg, Cosmology. Oxford Univeristy Press, 2008. 

[6] M. Camenzind, “Modern Cosmology Part III: The Friedmann Cosmos,” Mod. Cosmol. no. C, (2010) . www.lsw.uni-heidelberg.de. 

[7] M. Blau, “Lecture Notes on General Relativity,” 2018. http://www.blau.itp.unibe.ch/Lecturenotes.html. 

[8] M. A. Pahre, S. G. Djorgovski, and R. R. de Carvalho, “A Tolman Surface Brightness Test for Universal Expansion and the Evolution of Elliptical Galaxies in Distant Clusters,” Astrophys. J. 456 no. 2, (Jan, 1996) 1–13, arXiv:9511061 [astro-ph]. http://stacks.iop.org/1538-4357/456/i=2/a=L79. 

[9] L. M. Lubin and A. Sandage, “The Tolman Surface Brightness Test for the Reality of the Expansion. IV. A Measurement of the Tolman Signal and the Luminosity Evolution of Early-Type Galaxies,” Astron. J. 122 no. 3, (Sep, 2001) 1084–1103, arXiv:0106566v1 [astro-ph]. http://stacks.iop.org/1538-

[10] I. Trujillo, N. M. Forster Schreiber, G. Rudnick, M. Barden, M. Franx, H. Rix, J. A. R. Caldwell, D. H. McIntosh, S. Toft, B. Haussler, A. Zirm, P. G. van Dokkum, I. Labbe, A. Moorwood, H. Rottgering, A. van der Wel, P. van der Werf, and L. van Starkenburg, “The Size Evolution of Galaxies since z 3: Combining SDSS, GEMS, and FIRES,” Astrophys. J. 650 no. 1, (Oct, 2006) 18–41. http://iopscience.iop.org/0004-637X/650/1/18/fulltext/. 

[11] E. J. Lerner, “Evidence for a Non-Expanding Universe: Surface Brightness Data From HUDF,” in AIP Conf. Proc., vol. 822, pp. 60–74. AIP, Mar, 2006. http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2189123. 

[12] R. J. Allen, G. G. Kacprzak, K. Glazebrook, I. Labbe, K.-V. H. Tran, L. R. Spitler, M. Cowley, T. Nanayakkara, C. Papovich, R. Quadri, C. M. S. Straatman, V. Tilvi, and P. van Dokkum, “The Size Evolution of Star-forming Galaxies Since z˜7 Using ZFOURGE,” Astrophys. J. 834 no. 2, (Dec, 2017) 11, arXiv:1612.05262. http://arxiv.org/abs/1612.05262http://dx.doi.org/10.3847/2041-8213/834/2/L11http: //arxiv.org/abs/1612.05262{\%}0Ahttp://dx.doi.org/10.3847/2041-8213/834/2/L11. 

[13] E. J. Lerner, “Tolman Test from z = 0.1 to z = 5.5: Preliminary results challenge the expanding universe model,” 2nd Cris. Cosmol. Conf. 413 (Jun, 2009) 12, arXiv:0906.4284. http://adsabs.harvard.edu/abs/2009ASPC..413...12L. 

[14] M. LOPEZ-CORREDOIRA, “ANGULAR SIZE TEST ON THE EXPANSION OF THE ´ UNIVERSE,” Int. J. Mod. Phys. D 19 no. 03, (Mar, 2010) 245–291, arXiv:1002.0525. http://www.worldscientific.com/doi/abs/10.1142/S0218271810016397. 

[15] E. J. Lerner, R. Falomo, and R. Scarpa, “UV surface brightness of galaxies from the local universe to z ˜ 5,” Int. J. Mod. Phys. D 23 no. 06, (May, 2014) 1450058, arXiv:1405.0275. http://www.worldscientific.com/doi/abs/10.1142/S0218271814500588. 

[16] M. L´opez-Corredoira, “Tests and problems of the standard model in cosmology,” Found. Phys. 47 no. 6, (Jan, 2017) 711–768, arXiv:1701.08720. http://arxiv.org/abs/1701.08720. 

[17] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, “Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM,” Astrophys. J. 876 no. 1, (May, 2019) 85. http://stacks.iop.org/0004-637X/876/i=1/a=85?key=crossref. 1d775b24b999e5a2a32effecfce1a766. 

[18] R. M. Bielby and T. Shanks, “Anomalous SZ contribution to three-year WMAP data,” Mon. Not. R. Astron. Soc. 382 no. 3, (Nov, 2007) 1196–1202, arXiv:0703470 [astro-ph]. http://mnras.oxfordjournals.org/cgi/doi/10.1111/j.1365-2966.2007.12456.x. 

[19] R. H. Sanders, “Modified Newtonian Dynamics: A Falsification of Cold Dark Matter,” Adv. Astron. 2009 (2009) 1–9. http://www.hindawi.com/journals/aa/2009/752439/. 

[20] R. Watkins, H. A. Feldman, and M. J. Hudson, “Consistently large cosmic flows on scales of 100 h 1 Mpc : a challenge for the standard ΛCDM cosmology,” Mon. Not. R. Astron. Soc. 392 no. 2, (Jan, 2009) 743–756. http://mnras.oxfordjournals.org/cgi/doi/10.1111/j.1365-2966.2008.14089.x. 

[21] G. D. Starkman, C. J. Copi, D. Huterer, and D. Schwarz, “The Oddly Quiet Universe: How the CMB challenges cosmology’s standard model,” arXiv:1201.2459. http://arxiv.org/abs/1201.2459. 

[22] P. KROUPA, M. PAWLOWSKI, and M. MILGROM, “THE FAILURES OF THE STANDARD MODEL OF COSMOLOGY REQUIRE A NEW PARADIGM,” Int. J. Mod. Phys. D 21 no. 14, (Dec, 2012) 1230003. http://www.worldscientific.com/doi/abs/10.1142/S0218271812300030. 

[23] I. D. Karachentsev, “Missing dark matter in the local universe,” Astrophys. Bull. 67 no. 2, (May, 2012) 123–134. http://link.springer.com/10.1134/S1990341312020010. 

[24] P. Kroupa, “The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology,” Publ. Astron. Soc. Aust. 29 no. 04, (Jan, 2012) 395–433. http://www.journals.cambridge.org/abstract{\_}S1323358000001417. 

[25] A. Ijjas, P. J. Steinhardt, and A. Loeb, “Inflationary paradigm in trouble after Planck2013,” Phys. Lett. B 723 no. 4-5, (Jun, 2013) 261–266. http://linkinghub.elsevier.com/retrieve/pii/S0370269313003924. 

[26] L. Perivolaropoulos, “Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy,” Galaxies 2 no. 1, (Jan, 2014) 22–61. http://www.mdpi.com/2075-4434/2/1/22. 

[27] V. C. Rubin, N. Thonnard, and J. Ford, W. K., “Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/,” Astrophys. J. 238 (Jun, 1980) 471. http://adsabs.harvard.edu/doi/10.1086/158003. 

[28] M. Milgrom, “A modification of the Newtonian dynamics - Implications for galaxies,” Astrophys. J. 270 (Jul, 1983) 371. http://adsabs.harvard.edu/doi/10.1086/161131. 

[29] M. Milgrom, “A Modification of the Newtonian Dynamics - Implications for Galaxy Systems,” Astrophys. J. 270 (Jul, 1983) 384. http://adsabs.harvard.edu/doi/10.1086/161132. 

[30] M. Milgrom, “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis,” Astrophys. J. 270 (Jul, 1983) 365. http://adsabs.harvard.edu/doi/10.1086/161130. 

[31] V. Trimble, “Existence and Nature of Dark Matter in the Universe,” Annu. Rev. Astron. Astrophys. 25 no. 1, (Sep, 1987) 425–472. http://www.annualreviews.org/doi/abs/10.1146/annurev.aa.25.090187.002233. 

[32] S. Gurovich, S. S. McGaugh, K. C. Freeman, H. Jerjen, L. Staveley-Smith, and W. J. De Blok, “The baryonic tully-fisher relation,” Publ. Astron. Soc. Aust. 21 no. 4, (Feb, 2004) 412–414, arXiv:0003001 [astro-ph]. http://arxiv.org/abs/astro-ph/0003001http://dx.doi.org/10.1086/312628. 

[33] A. Tamm, E. Tempel, and P. Tenjes, “Visible and dark matter in M31 - I. Properties of stellar components,” arXiv:0707.4375. http://arxiv.org/abs/0707.4375. 

[34] E. Tempel, A. Tamm, and P. Tenjes, “Visible and dark matter in M 31 - II. A dynamical model and dark matter density distribution,” arXiv:0707.4374. http://arxiv.org/abs/0707.4374. 

[35] L. Chemin, C. Carignan, and T. Foster, “HI kinematics and dynamics of Messier 31,” arXiv:0909.3846. http://arxiv.org/abs/0909.3846. 

[36] D. Foreman-MacKey, “A Fully Self-Consistent Constraint on the Mass of M31 and the Local Group,”. https://qspace.library.queensu.ca/handle/1974/5998. 

[37] B. Famaey and S. S. McGaugh, “Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions,” Living Rev. Relativ. 15 (2012) . http://www.livingreviews.org/lrr-2012-10. 

[38] S. Torres-Flores, B. Epinat, P. Amram, H. Plana, C. Mendes de Oliveira, and S. S. McGaugh, “The baryonic tully-fisher relation of gas-rich galaxies as a test of ΛcDM and MOND,” Astron. J. 143 (Jul, 2012) , arXiv:1107.2934. http://arxiv.org/abs/1107.2934http://dx.doi.org/10.1088/0004-6256/143/2/40. 

[39] P. Kroupa, “Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation 1,” Can. J. Phys. 93 no. 2, (Feb, 2015) 169–202, arXiv:1406.4860. http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2014-0179. 

[40] M. Milgrom, “The MOND paradigm of modified dynamics,” Scholarpedia 9 no. 6, (Jun, 2014) 31410. http://www.scholarpedia.org/article/The{\_}MOND{\_}paradigm{\_}of{\_ }modified{\_}dynamics. 

[41] G. C. McVittie, “The mass-particle in an expanding universe,” Mon. Not. R. Astron. Soc. 93 (1933) . http://adsabs.harvard.edu/abs/1933MNRAS..93..325M. 

[42] A. Einstein and E. G. Straus, “The Influence of the Expansion of Space on the Gravitation Fields Surrounding the Individual Stars,” Rev. Mod. Phys. 17 no. 2-3, (Apr, 1945) 120–124. http://link.aps.org/doi/10.1103/RevModPhys.17.120. 

[43] J. M. M. Senovilla and R. Vera, “Impossibility of the Cylindrically Symmetric Einstein-Straus Model,” Phys. Rev. Lett. 78 no. 12, (Mar, 1997) 2284–2287. http://link.aps.org/doi/10.1103/PhysRevLett.78.2284. 

[44] M. Mars, “Axially symmetric Einstein-Straus models,” Phys. Rev. D 57 no. 6, (Mar, 1998) 3389–3400, arXiv:0202087 [gr-qc]. http://arxiv.org/abs/gr-qc/0202087. 

[45] G. A. Baker, “Effects on the structure of the universe of an accelerating expansion,” arXiv:0112320 [astro-ph]. http://arxiv.org/abs/astro-ph/0112320. 

[46] M. Carrera and D. Giulini, “On the influence of the global cosmological expansion on the local dynamics in the Solar System,” arXiv:0602098 [gr-qc]. http://arxiv.org/abs/gr-qc/0602098. 

[47] A. Friedman, “On the Curvature of Space,” Gen. Relativ. Gravit. 31 no. 12, 1991–2000. http://link.springer.com/article/10.1023/A{\%}3A1026751225741. 

[48] H. P. Robertson, “Kinematics and World-Structure,” Astrophys. J. 82 (Nov, 1935) 284. http://adsabs.harvard.edu/doi/10.1086/143681.

[49] A. G. WALKER, “ON RIEMANNTAN SPACES WITH SPHERICAL SYMMETRY ABOUT A LINE, AND THE CONDITIONS FOR ISOTROPY IN GENJ RELATIVITY,” Q. J. Math. os-6 no. 1, (1935) 81–93. http://qjmath.oxfordjournals.org/cgi/doi/10.1093/qmath/os-6.1.81. 

[50] A. G. WALKER, “SPATIAL DISTANCE IN GENERAL RELATIVITY,” Q. J. Math. os-4 no. 1, (1933) 71–80. http://qjmath.oxfordjournals.org/cgi/doi/10.1093/qmath/os-4.1.71. 

[51] G. Lemaˆıtre, “Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae,” Mon. Not. R. Astron. Soc. 91 (1931) . http://adsabs.harvard.edu/abs/1931MNRAS..91..483L. 

[52] R. M. Wald, General Relativity. University Of Chicago Press, 1st editio ed., 1984. 

[53] C. Braxmaier, H. M¨uller, O. Pradl, J. Mlynek, A. Peters, and S. Schiller, “Tests of relativity using a cryogenic optical resonator.,” Phys. Rev. Lett. 88 no. 1, (Jan, 2002) 010401. http://www.ncbi.nlm.nih.gov/pubmed/11800924. 

[54] D.-M. Sjøstrøm, “Bosons and Fermions in Curved Spacetime,” 2013. http://brage.bibsys.no/xmlui/handle/11250/246917. 

[55] A. O. Barut and I. H. Duru, “Exact solutions of the Dirac equation in spatially flat Robertson-Walker space-times,” Phys. Rev. D 36 no. 12, (Dec, 1987) 3705–3711. http://link.aps.org/doi/10.1103/PhysRevD.36.3705. 

[56] M. D. Pollock, “ON THE DIRAC EQUATION IN CURVED SPACE-TIME,” ACTA Phys. Pol. B 41 no. 8, (2010) . http://www.actaphys.uj.edu.pl/fulltext?series=Reg{\&}vol=41{\&}page=1827. 

[57] C. G. Darwin, “The Wave Equations of the Electron,” Proc. R. Soc. A Math. Phys. Eng. Sci. 118 no. 780, (Apr, 1928) 654–680. http://rspa.royalsocietypublishing.org/content/118/780/654.abstract. 

[58] J. Branson, “Quantum Physics,” 2003. http://quantummechanics.ucsd.edu/ph130a/130{\_}notes/130{\_}notes.html. 

[59] R. Fitzpatrick, An Introduction to Celestial Mechanics. Cambridge University Press, Cambridge, 2012. http://ebooks.cambridge.org/ref/id/CBO9781139152310. 

[60] W. Rindler, Essential Relativity : Special, General, and Cosmological. Springer Berlin Heidelberg, 1977. 

[61] S. G. TURYSHEV and J. G. WILLIAMS, “Space-based tests of gravity with laser ranging,” Int. J. Mod. Phys. D 16 no. 12a, 2165–2179, arXiv:0611095 [gr-qc]. http: //arxiv.org/abs/gr-qc/0611095http://dx.doi.org/10.1142/S0218271807011838http: //www.worldscientific.com/doi/abs/10.1142/S0218271807011838. 

[62] R. Narayan and M. Bartelmann, “Lectures on Gravitational Lensing,” arXiv:9606001 [astro-ph]. http://arxiv.org/abs/astro-ph/9606001. 

[63] D. G. Bruns, “Gravitational starlight deflection measurements during the 21 August 2017 total solar eclipse,” Class. Quantum Gravity 35 no. 7, (Jan, 2018) , arXiv:1802.00343. http://arxiv.org/abs/1802.00343http://dx.doi.org/10.1088/1361-6382/aaaf2a. 

[64] R. Ibata, N. F. Martin, M. Irwin, S. Chapman, A. M. N. Ferguson, G. F. Lewis, and A. W. McConnachie, “The Haunted Halos of Andromeda and Triangulum: A Panorama of Galaxy Formation in Action,” Astrophys. J. 671 no. 2, (Dec, 2007) 1591–1623. http://stacks.iop.org/0004-637X/671/i=2/a=1591. 

[65] S. Courteau, L. M. Widrow, M. McDonald, P. Guhathakurta, K. M. Gilbert, Y. Zhu, R. L. Beaton, and S. R. Majewski, “THE LUMINOSITY PROFILE AND STRUCTURAL PARAMETERS OF THE ANDROMEDA GALAXY,” Astrophys. J. 739 no. 1, (Sep, 2011) 20. http://iopscience.iop.org/0004-637X/739/1/20/article/. 

[66] C. Carignan, L. Chemin, and T. Foster, “Extended HI Rotation Curve of M31 using deep DRAO observations,” arXiv:0702609 [astro-ph]. http://arxiv.org/abs/astro-ph/0702609. 

[67] E. Corbelli, S. Lorenzoni, R. Walterbos, R. Braun, and D. Thilker, “A wide-field H I mosaic of Messier 31,” Astron. Astrophys. 511 (Mar, 2010) A89, arXiv:0912.4133. http://www.aanda.org/10.1051/0004-6361/200913297. 

[68] A. M. N. Ferguson, M. J. Irwin, R. A. Ibata, G. F. Lewis, and N. R. Tanvir, “Evidence for Stellar Substructure in the Halo and Outer Disk of M31,” Astron. J. 124 no. 3, (Sep, 2002) 1452–1463. http://stacks.iop.org/1538-3881/124/i=3/a=1452. 

[69] M. Tanaka, M. Chiba, Y. Komiyama, P. Guhathakurta, J. S. Kalirai, and M. Iye, “STRUCTURE AND POPULATION OF THE ANDROMEDA STELLAR HALO FROM A SUBARU/SUPRIME-CAM SURVEY,” Astrophys. J. 708 no. 2, (Jan, 2010) 1168–1203. http://stacks.iop.org/0004-637X/708/i=2/a=1168?key=crossref. 39ab1acf4534f131eba9f5768f1d8c1d. 

[70] A. G. Riess, L.-g. Strolger, J. Tonry, S. Casertano, H. C. Ferguson, B. Mobasher, P. Challis, A. V. Filippenko, S. Jha, W. Li, R. Chornock, R. P. Kirshner, B. Leibundgut, M. Dickinson, M. Livio, M. Giavalisco, C. C. Steidel, T. Benitez, and Z. Tsvetanov, “Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope : Evidence for Past Deceleration and Constraints on Dark Energy Evolution,” Astrophys. J. 607 no. 2, (Jun, 2004) 665–687, arXiv:0402512v2 [astro-ph]. http://stacks.iop.org/0004-637X/607/i=2/a=665. 

[71] W. H. Sorrell, “Misconceptions about the Hubble recession law,” Astrophys. Space Sci. 323 no. 2, (Jul, 2009) 205–211. http://link.springer.com/10.1007/s10509-009-0057-z. 

[72] J. Guy, M. Sullivan, A. Conley, N. Regnault, P. Astier, C. Balland, S. Basa, R. G. Carlberg, D. Fouchez, D. Hardin, I. M. Hook, D. A. Howell, R. Pain, N. Palanque-Delabrouille, K. M. Perrett, C. J. Pritchet, J. Rich, V. Ruhlmann-Kleider, D. Balam, S. Baumont, R. S. Ellis, S. Fabbro, H. K. Fakhouri, N. Fourmanoit, S. Gonz´alez-Gait´an, M. L. Graham, E. Hsiao, T. Kronborg, C. Lidman, A. M. Mourao, S. Perlmutter, P. Ripoche, N. Suzuki, and E. S. Walker, “The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints,” Astron. Astrophys. 523 (Nov, 2010) A7, arXiv:1010.4743. http://www.aanda.org/10.1051/0004-6361/201014468. 

[73] S. Perlmutter, S. Gabi, G. Goldhaber, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, R. Pain, C. R. Pennypacker, I. A. Small, R. S. Ellis, R. G. McMahon, B. J. Boyle, P. S. Bunclark, D. Carter, M. J. Irwin, K. Glazebrook, H. J. M. Newberg, A. V. Filippenko, T. Matheson, M. Dopita, and W. J. Couch, “Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z 0.35,” Astrophys. J. 483 no. 2, (Jul, 1997) 565–581, arXiv:9608192 [astro-ph]. http://stacks.iop.org/0004-637X/483/i=2/a=565. 

[74] N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, K. Barbary, L. F. Barrientos, J. Botyanszki, M. Brodwin, N. Connolly, K. S. Dawson, A. Dey, M. Doi, M. Donahue, S. Deustua, P. Eisenhardt, E. Ellingson, L. Faccioli, V. Fadeyev, H. K. Fakhouri, A. S. Fruchter, D. G. Gilbank, M. D. Gladders, G. Goldhaber, A. H. Gonzalez, A. Goobar, A. Gude, T. Hattori, H. Hoekstra, E. Hsiao, X. Huang, Y. Ihara, M. J. Jee, D. Johnston, N. Kashikawa, B. Koester, K. Konishi, M. Kowalski, E. V. Linder, L. Lubin, J. Melbourne, J. Meyers, T. Morokuma, F. Munshi, C. Mullis, T. Oda, N. Panagia, S. Perlmutter, M. Postman, T. Pritchard, J. Rhodes, P. Ripoche, P. Rosati, D. J. Schlegel, A. Spadafora, S. A. Stanford, V. Stanishev, D. Stern, M. Strovink, N. Takanashi, K. Tokita, M. Wagner, L. Wang, N. Yasuda, and H. K. C. Yee, “THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE,” Astrophys. J. 746 no. 1, (Feb, 2012) 85, arXiv:1105.3470. http://stacks.iop.org/0004-637X/746/i=1/a=85?key=crossref. 4d6837913710c5bf10f23d3e15e98d35. 

[75] M. Sullivan, J. Guy, A. Conley, N. Regnault, P. Astier, C. Balland, S. Basa, R. G. Carlberg, D. Fouchez, D. Hardin, I. M. Hook, D. A. Howell, R. Pain, N. Palanque-Delabrouille, K. M. Perrett, C. J. Pritchet, J. Rich, V. Ruhlmann-Kleider, D. Balam, S. Baumont, R. S. Ellis, S. Fabbro, H. K. Fakhouri, N. Fourmanoit, S. Gonz´alez-Gait´an, M. L. Graham, M. J. Hudson, E. Hsiao, T. Kronborg, C. Lidman, a. M. Mourao, J. D. Neill, S. Perlmutter, P. Ripoche, N. Suzuki, and E. S. Walker, “SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES,” Astrophys. J. 737 no. 2, (Aug, 2011) 102, arXiv:1104.1444v2. http://stacks.iop.org/ 0004-637X/737/i=2/a=102?key=crossref.e735c12c199d3274597f8a25549eebcd. 

[76] D. Rubin, R. A. Knop, E. Rykoff, G. Aldering, R. Amanullah, K. Barbary, M. S. Burns, A. Conley, N. Connolly, S. Deustua, V. Fadeyev, H. K. Fakhouri, A. S. Fruchter, R. A. Gibbons, G. Goldhaber, A. Goobar, E. Y. Hsiao, X. Huang, M. Kowalski, C. Lidman, J. Meyers, J. Nordin, S. Perlmutter, C. Saunders, A. L. Spadafora, V. Stanishev, N. Suzuki, Wang, and L., “PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE HUBBLE SPACE TELESCOPE,” Astrophys. J. 763 no. 1, (Jan, 2013) 35, arXiv:1205.3494. http://stacks.iop.org/0004-637X/763/i=1/a= 35?key=crossref.e868c4fbda5e9ee9a5a53dfeb99a09c7. 

[77] A. Conley, D. A. Howell, A. Howes, M. Sullivan, P. Astier, D. Balam, S. Basa, R. G. Carlberg, D. Fouchez, J. Guy, I. Hook, J. D. Neill, R. Pain, K. Perrett, C. J. Pritchet, N. Regnault, J. Rich, R. Taillet, E. Aubourg, J. Bronder, R. S. Ellis, S. Fabbro, M. Filiol, D. Le Borgne, N. Palanque-Delabrouille, S. Perlmutter, and P. Ripoche, “The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey,” Astron. J. 132 no. 4, (Oct, 2006) 1707–1713, arXiv:1109.0948. http://stacks.iop.org/1538-3881/132/i=4/a=1707. 

[78] D. O. Jones, S. A. Rodney, A. G. Riess, B. Mobasher, T. Dahlen, C. McCully, T. F. Frederiksen, S. Casertano, J. Hjorth, C. R. Keeton, A. Koekemoer, L.-G. Strolger, T. G. Wiklind, P. Challis, O. Graur, B. Hayden, B. Patel, B. J. Weiner, A. V. Filippenko, P. Garnavich, S. W. Jha, R. P. Kirshner, H. C. Ferguson, N. A. Grogin, and D. Kocevski, “THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914,” Astrophys. J. 768 no. 2, (May, 2013) 166, arXiv:1304.0768. http://stacks.iop.org/0004-637X/768/i=2/a=166?key= crossref.8303511d40753d9714be7bcacfa5ef60. 

[79] A. G. Riess, A. V. Filippenko, D. C. Leonard, B. P. Schmidt, N. Suntzeff, M. M. Phillips, R. Schommer, A. Clocchiatti, R. P. Kirshner, P. Garnavich, P. Challis, B. Leibundgut, J. Spyromilio, and R. C. Smith, “Time Dilation from Spectral Feature Age Measurements of Type IA Supernovae.,” Astron. J. 114 (Aug, 1997) 722, arXiv:9707260 [astro-ph]. http://adsabs.harvard.edu/cgi-bin/bib{\_}query?1997AJ....114..722R. 

[80] O. C. Wilson, “Possible Applications of Supernovae to the Study of the Nebular Red Shifts.,” Astrophys. J. 90 (1939) . http://articles.adsabs.harvard.edu/cgi-bin/nph-journal{\_}query?volume= 90{\&}plate{\_}select=NO{\&}page=634{\&}plate={\&}cover={\&}journal=ApJ.. 

[81] G. Goldhaber, D. E. Groom, A. Kim, G. Aldering, P. Astier, A. Conley, S. E. Deustua, R. Ellis, S. Fabbro, A. S. Fruchter, A. Goobar, I. Hook, M. Irwin, M. Kim, R. A. Knop, C. Lidman, R. McMahon, P. E. Nugent, R. Pain, N. Panagia, C. R. Pennypacker, S. Perlmutter, P. RuizLapuente, B. Schaefer, N. A. Walton, and T. York, “Timescale Stretch Parameterization of Type Ia Supernova B Band Light Curves,” Astrophys. J. 558 no. 1, (Sep, 2001) 359–368, arXiv:0104382 [astro-ph]. http://stacks.iop.org/0004-637X/558/i=1/a=359. 

[82] F. Hoyle, “The relation of radio astronomy to cosmology,” URSI Symp. 1 Paris Symp. Radio Astron. 9 (1959) 529. http://adsabs.harvard.edu/abs/1959IAUS....9..529H. 

[83] P. A. Laviolette, “Is the universe really expanding?,” Astrophys. J. 301 (Feb, 1986) 544. http://adsabs.harvard.edu/doi/10.1086/163922. 

[84] M. Barden, H. Rix, R. S. Somerville, E. F. Bell, B. Hausler, C. Y. Peng, A. Borch, S. V. W. Beckwith, J. A. R. Caldwell, C. Heymans, K. Jahnke, S. Jogee, D. H. McIntosh, K. Meisenheimer, S. F. Sanchez, L. Wisotzki, and C. Wolf, “GEMS: The Surface Brightness and Surface Mass Density Evolution of Disk Galaxies,” Astrophys. J. 635 no. 2, (Dec, 2005) 959–981. http://iopscience.iop.org/0004-637X/635/2/959/fulltext/. 

[85] S. Shen, H. J. Mo, S. D. M. White, M. R. Blanton, G. Kauffmann, W. Voges, J. Brinkmann, and I. Csabai, “The size distribution of galaxies in the Sloan Digital Sky Survey,” Mon. Not. R. Astron. Soc. 343 no. 3, (Aug, 2003) 978–994. http://mnras.oxfordjournals.org/content/343/3/978. 

[86] H. Fahr and J. Z¨onnchen, “The writing on the cosmic wall: Is there a straightforward explanation of the cosmic microwave background?,” Ann. Phys. 18 no. 10-11, (Oct, 2009) 699–721. http://doi.wiley.com/10.1002/andp.200910365. 

[87] H.-J. Fahr and M. Sokaliwska, “Remaining Problems in Interpretation of the Cosmic Microwave Background,” Phys. Res. Int. 2015 (Jun, 2015) 1–15. https://www.hindawi.com/archive/2015/503106/. 

[88] G. L. Verschuur, “ON THE APPARENT ASSOCIATIONS BETWEEN INTERSTELLAR NEUTRAL HYDROGEN STRUCTURE AND ( WMAP ) HIGH-FREQUENCY CONTINUUM EMISSION,” Astrophys. J. 711 no. 2, (Mar, 2010) 1208–1228, arXiv:1002.1661. http://stacks.iop.org/0004-637X/711/i=2/a=1208?key=crossref. efca1e805fdae8e36275b36f95be1a8d. 

[89] W. Q. Sumner, “On the variation of vacuum permittivity in Friedmann universes,” Astrophys. J. 429 (Jul, 1994) 491. http://adsabs.harvard.edu/doi/10.1086/174338. 

[90] W. Q. Sumner, “Observational Evidence from Supernovae for a Contracting Universe,” arXiv:0403012 [astro-ph]. http://arxiv.org/abs/astro-ph/0403012. 

[91] E. Schrodinger, “The proper vibrations of the expanding universe,” Physica 6 no. 7-12, (Jul, 1939) 899–912. http://linkinghub.elsevier.com/retrieve/pii/S0031891439900911. 

[92] S. Perlmutter and G. Aldering, “Measurements of Ω and Λ from 42 high-redshift supernovae,” Astrophys. . . . (1999) 1–33, arXiv:9812133v1 [arXiv:astro-ph]. http://iopscience.iop.org/0004-637X/517/2/565. 

[93] C. Wetterich, “Variable gravity Universe,” Phys. Rev. D 89 no. 2, (Jan, 2014) 024005. http://link.aps.org/doi/10.1103/PhysRevD.89.024005. 

[94] C. Wetterich, “Eternal Universe,” Phys. Rev. D 90 no. 4, (Aug, 2014) 043520. http://link.aps.org/doi/10.1103/PhysRevD.90.043520. 

[95] C. Wetterich, “Universe without expansion,” Phys. Dark Universe 2 no. 4, (Dec, 2013) 184–187. http://linkinghub.elsevier.com/retrieve/pii/S2212686413000332. 

[96] H. Traunm¨uller, “From magnitudes and redshifts of supernovae, their light-curves, and angular sizes of galaxies to a tenable cosmology,” Astrophys. Space Sci. 350 no. 2, (Apr, 2014) 755–767. http://link.springer.com/10.1007/s10509-013-1764-z.  

[97] A. Sandage and L. M. Lubin, “The Tolman Surface Brightness Test for the Reality of the Expansion. I. Calibration of the Necessary Local Parameters,” Astron. J. 121 no. 5, (May, 2001) 2271–2288, arXiv:0102213v1 [astro-ph]. http://stacks.iop.org/1538-3881/121/i=5/a=2271. 

[98] L. M. Lubin and A. Sandage, “The Tolman Surface Brightness Test for the Reality of the Expansion. III. [ITAL]HUBBLE SPACE TELESCOPE[/ITAL][ITAL]Hubble Space Telescope[/ITAL] Profile and Surface Brightness Data for Early-Type Galaxies in Three High-Redshift Clusters,” Astron. J. 122 no. 3, (Sep, 2001) 1071–1083, arXiv:0106563v1 [astro-ph]. http://stacks.iop.org/1538-3881/122/i=3/a=1071. 

[99] G. Steigman, “Primordial Nucleosynthesis,” arXiv:0308511 [astro-ph]. http://arxiv.org/abs/astro-ph/0308511. 

[100] S. Burles, K. M. Nollett, and M. S. Turner, “Big-Bang Nucleosynthesis: Linking Inner Space and Outer Space,” arXiv:9903300 [astro-ph]. http://arxiv.org/abs/astro-ph/9903300. 

[101] M. Anders, D. Trezzi, R. Menegazzo, M. Aliotta, A. Bellini, D. Bemmerer, C. Broggini, A. Caciolli, P. Corvisiero, H. Costantini, T. Davinson, Z. Elekes, M. Erhard, A. Formicola, Z. F¨ul¨op, G. Gervino, A. Guglielmetti, C. Gustavino, G. Gy¨urky, M. Junker, A. Lemut, M. Marta, C. Mazzocchi, P. Prati, C. Rossi Alvarez, D. A. Scott, E. Somorjai, O. Straniero, and T. Sz¨ucs, “First Direct Measurement of the H2(α,γ)Li6 Cross Section at Big Bang Energies and the Primordial Lithium Problem,” Phys. Rev. Lett. 113 no. 4, (Jul, 2014) 042501. http://link.aps.org/doi/10.1103/PhysRevLett.113.042501. 

[102] B. D. Fields, “The Primordial Lithium Problem,” Annu. Rev. Nucl. Part. Sci. 61 no. 1, (Nov, 2011) 47–68. http://www.annualreviews.org/doi/abs/10.1146/annurev-nucl-102010-130445. 

[103] L. Casagrande, C. Flynn, L. Portinari, L. Girardi, and R. Jimenez, “The helium abundance and ∆Y/∆Z in lower main-sequence stars,” Mon. Not. R. Astron. Soc. 382 no. 4, (Dec, 2007) 1516–1540, arXiv:0703766 [astro-ph]. http://mnras.oxfordjournals.org/cgi/doi/10.1111/j.1365-2966.2007.12512.x. 

[104] T. Prodanovi´c and B. D. Fields, “Cosmological cosmic rays: Sharpening the primordial lithium problem,” Phys. Rev. D 76 no. 8, (Oct, 2007) 083003, arXiv:0709.3300. http://link.aps.org/doi/10.1103/PhysRevD.76.083003. 

[105] E. Rollinde, E. Vangioni, and K. Olive, “Cosmological Cosmic Rays and the Observed 6 Li Plateau in Metalpoor Halo Stars,” Astrophys. J. 627 no. 2, (Jul, 2005) 666–673. http://iopscience.iop.org/0004-637X/627/2/666/fulltext/. 

[106] E. J. Lerner, The Big Bang Never Happened. 1991. http://bigbangneverhappened.org/. 

[107] V. Springel, C. S. Frenk, and S. D. M. White, “The large-scale structure of the Universe,” Nature 440 no. 7088, (Apr, 2006) 1137–1144, arXiv:0604561 [astro-ph]. 

[108] J. K. Yadav, J. S. Bagla, and N. Khandai, “Fractal dimension as a measure of the scale of homogeneity,” Mon. Not. R. Astron. Soc. 405 no. 3, (Apr, 2010) no–no. http://mnras.oxfordjournals.org/content/405/3/2009. 

[109] A. Cimatti, E. Daddi, A. Renzini, P. Cassata, E. Vanzella, L. Pozzetti, S. Cristiani, A. Fontana, G. Rodighiero, M. Mignoli, and G. Zamorani, “Old galaxies in the young Universe.,” Nature 430 no. 6996, (Jul, 2004) 184–7, arXiv:0407131 [astro-ph]. http://arxiv.org/abs/astro-ph/?0407131. 

[110] A. Webster, “The clustering of quasars from an objective-prism survey,” Mon. Not. R. Astron. Soc. 199 (1982) 683–705. http://adsabs.harvard.edu/abs/1982MNRAS.199..683W. 

[111] X. Fan, V. K. Narayanan, R. H. Lupton, M. A. Strauss, G. R. Knapp, R. H. Becker, R. L. White, L. Pentericci, S. K. Leggett, Z. Haiman, J. E. Gunn, Z. Ivezi´c, D. P. Schneider, S. F. Anderson, ˇ J. Brinkmann, N. A. Bahcall, A. J. Connolly, I. Csabai, M. Doi, M. Fukugita, T. Geballe, E. K. Grebel, D. Harbeck, G. Hennessy, D. Q. Lamb, G. Miknaitis, J. A. Munn, R. Nichol, S. Okamura, J. R. Pier, F. Prada, G. T. Richards, A. Szalay, and D. G. York, “A Survey of [CLC][ITAL]z[/ITAL][/CLC] > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at [CLC][ITAL]z[/ITAL][/CLC] 6,” Astron. J. 122 no. 6, (Dec, 2001) 2833–2849. http://m.iopscience.iop.org/1538-3881/122/6/2833/. 

[112] J. R. Gott III, M. Juri´c, D. Schlegel, F. Hoyle, M. Vogeley, M. Tegmark, N. Bahcall, and J. Brinkmann, “A Map of the Universe,” Astrophys. J. 624 no. 2, (May, 2005) 463–484. http://iopscience.iop.org/0004-637X/624/2/463/fulltext/. 

[113] I. Horvath, J. Hakkila, and Z. Bagoly, “The largest structure of the Universe, defined by Gamma-Ray Bursts,” arXiv:1311.1104. http://arxiv.org/abs/1311.1104. 

[114] R. G. Clowes, L. E. Campusano, M. J. Graham, and I. K. S¨ochting, “Two close large quasar groups of size 350 Mpc at,” Mon. Not. R. Astron. Soc. 419 no. 1, (Jan, 2012) 556–565, arXiv:1108.6221. http://mnras.oxfordjournals.org/cgi/doi/10.1111/j.1365-2966.2011.19719.x. 

[115] R. G. Clowes, K. A. Harris, S. Raghunathan, L. E. Campusano, I. K. Soechting, M. J. Graham, I. K. Sochting, and I. K. S¨ochting, “A structure in the early universe at z ˜ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology,” Mon. Not. R. Astron. Soc. 429 no. 4, (Nov, 2013) 2910–2916, arXiv:1211.6256. http://mnras.oxfordjournals.org/content/429/4/2910. 

[116] D. Hutsem´ekers, R. Cabanac, H. Lamy, and D. Sluse, “Mapping extreme-scale alignments of quasar polarization vectors,” Astron. Astrophys. 441 no. 3, (Oct, 2005) 915–930. http://www.edpsciences.org/10.1051/0004-6361:20053337. 

[117] A. Mariano and L. Perivolaropoulos, “CMB maximum temperature asymmetry axis: Alignment with other cosmic asymmetries,” Phys. Rev. D 87 no. 4, (Feb, 2013) 043511. http://link.aps.org/doi/10.1103/PhysRevD.87.043511. 

[118] U. Sawangwit, T. Shanks, R. D. Cannon, S. M. Croom, N. P. Ross, and D. A. Wake, “Cross-correlating WMAP 5 with 1.5 million LRGs: a new test for the ISW effect,” Mon. Not. R. Astron. Soc. 402 no. 4, (Mar, 2010) 2228–2244, arXiv:0911.1352. http://mnras.oxfordjournals.org/cgi/doi/10.1111/j.1365-2966.2009.16054.x. 

[119] M. Ibison, “Thermalization of Starlight in the Steady-State Cosmology,” arXiv:0910.3004. http://arxiv.org/abs/0910.3004. 

[120] A. P. S. Yadav and B. D. Wandelt, “Evidence of Primordial Non-Gaussianity ( fNL) in the Wilkinson Microwave Anisotropy Probe 3-Year Data at 2.8σ,” Phys. Rev. Lett. 100 no. 18, (May, 2008) 181301, arXiv:0712.1148. http://link.aps.org/doi/10.1103/PhysRevLett.100.181301. 

[121] M. J. Longo, “Does the Universe Have a Handedness,” arXiv:0703325 [astro-ph]. http://adsabs.harvard.edu/abs/2007astro.ph..3325L. 

[122] L. Rudnick, S. Brown, and L. R. Williams, “Extragalactic Radio Sources and the WMAP Cold Spot,” Astrophys. J. 671 no. 1, (Dec, 2007) 40–44. http://iopscience.iop.org/0004-637X/671/1/40/fulltext/. 

[123] R. Lieu, J. P. D. Mittaz, and S. Zhang, “The SunyaevZel’dovich Effect in a Sample of 31 Clusters: A Comparison between the XRay Predicted and WMAP Observed Cosmic Microwave Background Temperature Decrement,” Astrophys. J. 648 no. 1, (Sep, 2006) 176–199. http://iopscience.iop.org/0004-637X/648/1/176/fulltext/. 

[124] G. Burbidge and F. Hoyle, “The Origin of Helium and the Other Light Elements,” Astrophys. J. 509 no. 1, (Dec, 1998) L1–L3. http://stacks.iop.org/1538-4357/509/i=1/a=L1. 

[125] S. Inoue, N. Iwamoto, M. Orito, and M. Terasawa, “Nucleosynthesis in Baryonrich Outflows Associated with GammaRay Bursts,” Astrophys. J. 595 no. 1, (Sep, 2003) 294–303. http://iopscience.iop.org/0004-637X/595/1/294/fulltext/. 

[126] D. J. Mullan and J. L. Linsky, “Nonprimordial Deuterium in the Interstellar Medium,” Astrophys. J. 511 no. 1, (Jan, 1999) 502–512. http://iopscience.iop.org/0004-637X/511/1/502/fulltext/. [127] F. Iocco and M. Pato, “Lithium Synthesis in Microquasar Accretion,” Phys. Rev. Lett. 109 no. 2, (Jul, 2012) 021102, arXiv:1206.0736v2. http://link.aps.org/doi/10.1103/PhysRevLett.109.021102. [128] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge, 2003. http://ebooks.cambridge.org/ref/id/CBO9780511535185.

Comments

Popular posts from this blog

Why we need a new metric in GR